Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639491

ABSTRACT

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

2.
Sci Rep ; 11(1): 2121, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483532

ABSTRACT

The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration-response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.


Subject(s)
Antimalarials/pharmacology , High-Throughput Screening Assays/methods , Liver/drug effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Drug Evaluation, Preclinical/methods , Hep G2 Cells , Humans , Liver/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Protective Agents/chemistry , Protective Agents/pharmacology , Reproducibility of Results , Structure-Activity Relationship , Thiadiazines/chemistry , Thiadiazines/pharmacology
3.
J Med Chem ; 63(11): 6179-6202, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32390431

ABSTRACT

The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.


Subject(s)
Acridones/chemistry , Antimalarials/chemistry , Acridones/pharmacokinetics , Acridones/pharmacology , Acridones/therapeutic use , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cell Survival/drug effects , Disease Models, Animal , Female , Half-Life , Hep G2 Cells , Humans , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/pathology , Male , Mice , Mice, Inbred C57BL , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 11(3): 249-257, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32184953

ABSTRACT

Utilizing a target repurposing and parasite-hopping approach, we tested a previously reported library of compounds that were active against Trypanosoma brucei, plus 31 new compounds, against a variety of protozoan parasites including Trypanosoma cruzi, Leishmania major, Leishmania donovani, and Plasmodium falciparum. This led to the discovery of several compounds with submicromolar activities and improved physicochemical properties that are early leads toward the development of chemotherapeutic agents against kinetoplastid diseases and malaria.

5.
J Med Chem ; 62(7): 3475-3502, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30852885

ABSTRACT

Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.


Subject(s)
Acridones/chemistry , Acridones/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Discovery/methods , Acridones/therapeutic use , Animals , Antimalarials/therapeutic use , Disease Models, Animal , Hep G2 Cells , Humans , Malaria/drug therapy , Mice , Plasmodium/classification , Plasmodium/drug effects , Species Specificity , Structure-Activity Relationship
6.
Malar J ; 18(1): 38, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30767768

ABSTRACT

BACKGROUND: Rodent malaria models are extensively used to predict treatment outcomes in human infections. There is a constant need to improve and refine these models by innovating ways to apply new scientific findings and cutting edge technologies. In addition, and in accordance with the three R's of animal use in research, in vivo studies should be constantly refined to avoid unnecessary pain and distress to the experimental animals by using preemptive euthanasia as soon as the main scientific study objective has been accomplished. METHODS: The new methodology described in this manuscript uses the whole-body bioluminescence signal emitted by transgenic, luciferase-expressing Plasmodium berghei parasites to assess the parasite load predicted parasitaemia (PLPP) in drug and control treated female ICR-CD1 mice infected with 1 × 105 luciferase-expressing P. berghei (ANKA strain) infected erythrocytes. This methodology can replace other time-consuming and expensive methods that are routinely used to measure parasitaemia in infected animals, such as Giemsa-stained thin blood smears and flow cytometry. RESULTS: There is a good correlation between whole-body bioluminescence signal and parasitaemia measured using Giemsa-stained thin blood smears and flow cytometry respectively in donor and study mice in the modified Thompson test. The algebraic formulas which represent these correlations can be successfully used to assess PLPP in donor and study mice. In addition, the new methodology can pinpoint sick animals 2-8 days before they would have been otherwise diagnosed based on behavioural or any other signs of malaria disease. CONCLUSIONS: The new method for predicting parasitaemia in the modified Thompson test is simple, precise, objective, and minimizes false positive results that can lead to the premature removal of animals from study. Furthermore, from the animal welfare perspective of replace, reduce, and refine, this new method facilitates early removal of sick animals from study as soon as the study objective has been achieved, in many cases well before the clinical signs of disease are present.


Subject(s)
Antimalarials/administration & dosage , Disease Models, Animal , Luminescent Measurements/methods , Malaria/diagnostic imaging , Parasite Load , Parasitemia/diagnostic imaging , Whole Body Imaging/methods , Animals , Female , Genes, Reporter , Humans , Malaria/drug therapy , Malaria/parasitology , Mice, Inbred ICR , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Staining and Labeling , Treatment Outcome
7.
ACS Med Chem Lett ; 9(10): 996-1001, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30344906

ABSTRACT

Discovery of new chemotherapeutic lead agents can be accelerated by optimizing chemotypes proven to be effective in other diseases to act against parasites. One such medicinal chemistry campaign has focused on optimizing the anilinoquinazoline drug lapatinib (1) and the alkynyl thieno[3,2-d]pyrimidine hit GW837016X (NEU-391, 3) into leads for antitrypanosome drugs. We now report the structure-activity relationship studies of 3 and its analogs against Trypanosoma brucei, which causes human African trypanosomiasis (HAT). The series was also tested against Trypanosoma cruzi, Leishmania major, and Plasmodium falciparum. In each case, potent antiparasitic hits with acceptable toxicity margins over mammalian HepG2 and NIH3T3 cell lines were identified. In a mouse model of HAT, 3 extended life of treated mice by 50%, compared to untreated controls. At the cellular level, 3 inhibited mitosis and cytokinesis in T. brucei. Thus, the alkynylthieno[3,2-d]pyrimidine chemotype is an advanced hit worthy of further optimization as a potential chemotherapeutic agent for HAT.

8.
Malar Res Treat ; 2017: 7508291, 2017.
Article in English | MEDLINE | ID: mdl-28491482

ABSTRACT

Decoquinate nanoparticle and microparticle suspended in an oily vehicle to retard drug release are evaluated for long-term malaria prophylaxis. Pharmacokinetic studies in normal animals and antimalarial efficacy in liver stage malaria mice were conducted at various single intramuscular-decoquinate doses for 2, 4, 6, or 8 weeks prior to infection with P. berghei sporozoites. The liver stage efficacy evaluation was monitored by using an in vivo imaging system. Full causal prophylaxis was shown in mice with a single intramuscular dose at 120 mg/kg of nanoparticle decoquinate (0.43 µm) for 2-3 weeks and with microparticle decoquinate (8.31 µm) injected 8 weeks earlier than inoculation. The time above MIC of 1,375 hr observed with the microparticle formulation provided a 2.2-fold longer drug exposure than with the nanoparticle formulation (624 hr). The prophylactic effect of the microparticle formulation observed in mice was shown to be 3-4 times longer than the nanoparticle decoquinate formulation.

9.
Mil Med ; 182(S1): 360-368, 2017 03.
Article in English | MEDLINE | ID: mdl-28291500

ABSTRACT

BACKGROUND: The liver stages of Plasmodium parasites are important targets for the discovery and development of prophylactic drugs. METHODS: A real-time in vivo imaging system was used to determine the level of luminescence measured from firefly luciferase expression by sporozoites developing in hepatocytes in different strains of mice. RESULTS: The luminescence values (photon counts/sec) measured from the anatomical liver location in the untreated mice infected with 10,000 Plasmodium berghei sporozoites were 8.15 × 105 for C57BL/6 Albino, 2.12 × 105 for C3H/HeNCrL, 0.91 × 105 for C57BL/6 WT, 0.28 × 105 for BALB/c, and 0.16 × 105 for ICR/CD-1 mice. This data suggests that the C57BL/6 Albino strain is most susceptible to luminescent photon, mainly because the less light scattering and absorption from deeper tissues and the skin in the strain of mouse. The photon count observed in black C57BL/6 wild type mice was shown to be 88.83% lower compared to C57BL/6 Albino mice. Although the highest growth rate of sporozoites in hepatocytes was found for C57BL/6 wild type mice in this study, the black skin of this mouse significantly reduced parasite-associated bioluminescence. CONCLUSIONS: The minimal light scattering and absorption and also enhanced susceptibility to liver infection of C57BL/6 Albino mice makes this strain preferable sensitivity for discovery and development of prophylactic antimalarial drugs.


Subject(s)
Disease Susceptibility/physiopathology , Liver/physiopathology , Mice/parasitology , Plasmodium berghei/pathogenicity , Animals , Female , Male , Mice, Inbred BALB C/parasitology , Mice, Inbred C3H/parasitology , Mice, Inbred C57BL/parasitology , Mice, Inbred ICR/parasitology
10.
Malar J ; 15(1): 588, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27923405

ABSTRACT

BACKGROUND: Due to the ability of the 8-aminoquinolines (8AQs) to kill different stages of the malaria parasite, primaquine (PQ) and tafenoquine (TQ) are vital for causal prophylaxis and the eradication of erythrocytic Plasmodium sp. parasites. Recognizing the potential role of cytochrome (CYP) 450 2D6 in the metabolism and subsequent hepatic efficacy of 8-aminoquinolines, studies were designed to explore whether CYP2D-mediated metabolism was related to the ability of single-dose PQ and TQ to eliminate the asexual and sexual erythrocytic stages of Plasmodium berghei. METHODS: An IV P. berghei sporozoite murine challenge model was utilized to directly compare causal prophylactic and erythrocytic activity (asexual and sexual parasite stages) dose-response relationships in C57BL/6 wild-type (WT) mice and subsequently compare the erythrocytic activity of PQ and TQ in WT and CYP2D knock-out (KO) mice. RESULTS: Single-dose administration of either 25 mg/kg TQ or 40 mg/kg PQ eradicated the erythrocytic stages (asexual and sexual) of P. berghei in C57BL WT and CYP2D KO mice. In WT animals, the apparent elimination of hepatic infections occurs at lower doses of PQ than are required to eliminate erythrocytic infections. In contrast, the minimally effective dose of TQ needed to achieve causal prophylaxis and to eradicate erythrocytic parasites was analogous. CONCLUSION: The genetic deletion of the CYP2D cluster does not affect the ability of PQ or TQ to eradicate the blood stages (asexual and sexual) of P. berghei after single-dose administration.


Subject(s)
Aminoquinolines/pharmacology , Antimalarials/pharmacology , Cytochrome P-450 CYP2D6/metabolism , Malaria/drug therapy , Plasmodium berghei/drug effects , Primaquine/pharmacology , Aminoquinolines/administration & dosage , Animals , Antimalarials/administration & dosage , Chemoprevention/methods , Cytochrome P-450 CYP2D6/deficiency , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy/methods , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Primaquine/administration & dosage , Treatment Outcome
11.
ACS Infect Dis ; 2(3): 180-186, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26998514

ABSTRACT

A kinase-targeting cell-based high-throughput screen (HTS) against Trypanosoma brucei was recently reported, and this screening set included the Published Kinase Inhibitor Set (PKIS). From the PKIS was identified 53 compounds with pEC50 ≥ 6. Utilizing the published data available for the PKIS, a statistical analysis of these active antiparasitic compounds was performed, allowing identification of a set of human kinases having inhibitors that show a high likelihood for blocking T. brucei cellular proliferation in vitro. This observation was confirmed by testing other established inhibitors of these human kinases and by mining past screening campaigns at GlaxoSmithKline. Overall, although the parasite targets of action are not known, inhibitors of this set of human kinases displayed an enhanced hit rate relative to a random kinase-targeting HTS campaign, suggesting that repurposing efforts should focus primarily on inhibitors of these specific human kinases. We therefore term this statistical analysis-driven approach "preferred lead repurposing".

12.
Am J Trop Med Hyg ; 94(2): 340-347, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26503273

ABSTRACT

Leishmaniasis is a complex tropical disease caused by kinetoplastid parasitic protozoa of the genus Leishmania and is transmitted by the sand fly insect vector. Cutaneous leishmaniasis (CL) is the most common form of this disease, and CL infections often result in serious skin lesions and scars. CL remains a public health problem in many endemic countries worldwide because of the absence of effective, safe, and cost-effective drugs for treatment. One of the strategies we chose to use to find novel chemical entities worthy of further development as antileishmanials involved screening synthetic and natural products libraries. In our study, we developed a Leishmania major intracellular amastigote assay that uses the activity of luciferase as a measure of parasite proliferation and used this assay to screen a collection of 400 compounds obtained from Medicines for Malaria Venture (MMV) for their antileishmanial activity. Our results showed that 14 compounds identified by MMV as antimalarial drugs have antileishmanial activity and can potentially be optimized for CL drug development.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Leishmania major/drug effects , Antiprotozoal Agents/chemistry , Cell Survival , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure
13.
J Med Chem ; 58(14): 5522-37, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26087257

ABSTRACT

Tropical protozoal infections are a significant cause of morbidity and mortality worldwide; four in particular (human African trypanosomiasis (HAT), Chagas disease, cutaneous leishmaniasis, and malaria) have an estimated combined burden of over 87 million disability-adjusted life years. New drugs are needed for each of these diseases. Building on the previous identification of NEU-617 (1) as a potent and nontoxic inhibitor of proliferation for the HAT pathogen (Trypanosoma brucei), we have now tested this class of analogs against other protozoal species: T. cruzi (Chagas disease), Leishmania major (cutaneous leishmaniasis), and Plasmodium falciparum (malaria). Based on hits identified in this screening campaign, we describe the preparation of several replacements for the quinazoline scaffold and report these inhibitors' biological activities against these parasites. In doing this, we have identified several potent proliferation inhibitors for each pathogen, such as 4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)-6-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)quinoline-3-carbonitrile (NEU-924, 83) for T. cruzi and N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-7-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)cinnolin-4-amine (NEU-1017, 68) for L. major and P. falciparum.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Drug Discovery , Growth Inhibitors/chemistry , Growth Inhibitors/pharmacology , Parasites/drug effects , Parasites/growth & development , Animals , Drug Evaluation, Preclinical , Hep G2 Cells , Humans , Quinazolines/chemistry , Quinazolines/pharmacology
14.
Medchemcomm ; 5(5): 655-658, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24910766

ABSTRACT

Hesperadin, an established human Aurora B inhibitor, was tested against cultures of Trypanosoma brucei, Leishmania major, and Plasmodium falciparum, and was identified to be a potent proliferation inhibitor. A series of analogs was designed and tested to establish the initial structure-activity relationships for each parasite. In this study, we identified multiple non-toxic compounds with high potency against T. brucei and P. falciparum with good selectivity. These compounds may represent an opportunity for continued optimization.

15.
Eur J Drug Metab Pharmacokinet ; 39(4): 231-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24705994

ABSTRACT

The use of mefloquine (MQ) for antimalarial treatment and prophylaxis has diminished largely in response to concerns about its neurologic side effects. An analog campaign designed to maintain the efficacy of MQ while minimizing blood-brain barrier (BBB) penetration has resulted in the synthesis of a prodrug with comparable-to-superior in vivo efficacy versus mefloquine in a P. berghei mouse model while exhibiting a sixfold reduction in CNS drug levels. The prodrug, WR319670, performed poorly compared to MQ in in vitro efficacy assays, but had promising in vitro permeability in an MDCK-MDR1 cell line BBB permeability screen. Its metabolite, WR308245, exhibited high predicted BBB penetration with excellent in vitro efficacy. Both WR319670 and WR308245 cured 5/5 animals in separate in vivo efficacy studies. The in vivo efficacy of WR319670 was thought to be due to the formation of a more active metabolite, specifically WR308245. This was supported by pharmacokinetics studies in non-infected mice, which showed that both IV and oral administration of WR319670 produced essentially identical levels of WR319670 and WR308245 in both plasma and brain samples at all time points. In these studies, the levels of WR308245 in the brain were 1/4 and 1/6 that of MQ in similar IV and oral studies, respectively. These data show that the use of WR319670 as an antimalarial prodrug was able to maintain efficacy in in vivo efficacy screens, while significantly lowering overall penetration of drug and metabolites across the BBB.


Subject(s)
Antimalarials/pharmacokinetics , Blood-Brain Barrier , Mefloquine/analogs & derivatives , Prodrugs/pharmacokinetics , Animals , Antimalarials/pharmacology , Male , Mefloquine/pharmacokinetics , Mefloquine/pharmacology , Mice , Mice, Inbred ICR , Prodrugs/pharmacology
16.
Malar J ; 13: 2, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24386891

ABSTRACT

BACKGROUND: Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. METHODS: In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. RESULTS: NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. CONCLUSIONS: The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.


Subject(s)
Aminoquinolines/metabolism , Antimalarials/metabolism , Cytochrome P-450 CYP2D6/metabolism , Malaria/drug therapy , Plasmodium berghei/drug effects , Succinates/metabolism , Animals , Cytochrome P-450 CYP2D6/genetics , Dose-Response Relationship, Drug , Malaria/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Nanomedicine ; 10(1): 57-65, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23891618

ABSTRACT

Decoquinate has potent activity against both Plasmodium hepatic development and red cell replication when tested in vitro. Decoquinate, however, is practically insoluble in water. To achieve its maximal in vivo efficacy, we generated nanoparticle formulations of decoquinate with a mean particle size less than 400 nm. Three separate preparations at doses of decoquinate 0.5-5 mg/kg were examined in mice infected with Plasmodium berghei. Oral administration of nanoparticle decoquinate at a dose of 1.25 mg/kg effectively inhibited the liver-stage parasite growth and provided complete causal prophylactic protection. This efficacy is 15 fold greater than that observed for microparticle decoquinate, which requires minimal dose of 20 mg/kg for the same inhibitory effect. Further in vitro studies utilizing dose-response assays revealed that decoquinate nanoformulation was substantially more potent than decoquinate microsuspension in killing both liver and blood stage malarial parasites, proving its potential for therapeutic development. FROM THE CLINICAL EDITOR: In this study, a nanoparticle formulation of decoquinate is shown to have superior bioavailability and efficacy in a mouse model of malaria, paving the way to the development of novel, potentially less toxic and more effective therapeutics to combat a disease that still has an enormous impact on a global scale despite the available partially effective therapies.


Subject(s)
Antimalarials/administration & dosage , Decoquinate/administration & dosage , Malaria, Falciparum/drug therapy , Nanoparticles/administration & dosage , Administration, Oral , Animals , Antimalarials/chemistry , Decoquinate/chemistry , Humans , Liver/drug effects , Liver/parasitology , Malaria, Falciparum/parasitology , Mice , Nanoparticles/chemistry , Plasmodium berghei/drug effects
18.
Bioorg Med Chem ; 21(23): 7250-6, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24139941

ABSTRACT

Drug resistance is a major challenge in antimalarial chemotherapy. In addition, a complete cure of malaria requires intervention at various stages in the development of the parasite within the host. There are only a few antimalarials that target the liver stage of the Plasmodium species which is an essential part of the life cycle of the malarial parasite. We report a series of antimalarial 3,5-bis(benzylidene)-4-piperidones and related N-acyl analogs 1-5, a number of which exhibit potent in vitro growth-inhibiting properties towards drug-sensitive D6 and drug-resistant C235 strains of Plasmodium falciparum as well as inhibiting the liver stage development of the malarial life cycle. The compounds 2b (IC50: 165 ng/mL), 3b (IC50: 186 ng/mL), 5c (IC50: 159 ng/mL) and 5d (IC50: 93.5 ng/mL) emerged as lead molecules that inhibit liver stage Plasmodium berghei and are significantly more potent than chloroquine (IC50: >2000 ng/mL) and mefloquine (IC50: >2000 ng/mL) in this screen. All the compounds that showed potent inhibitory activity against the P. berghei liver stage were nontoxic to human HepG2 liver cells (IC50: >2000 ng/mL). The compounds 5a and 5b exhibit comparable metabolic stability as chloroquine and mefloquine in human plasma and the most potent compound 5d demonstrated suitable permeability characteristics using the MDCK monolayer. These results emphasize the value of 3,5-bis(benzylidene)-4-piperidones as novel antimalarials for further drug development.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Liver/parasitology , Malaria, Falciparum/drug therapy , Piperidones/chemistry , Piperidones/pharmacology , Plasmodium falciparum/drug effects , Animals , Antimalarials/metabolism , Drug Resistance , Hep G2 Cells , Humans , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/parasitology , Mice , Piperidones/metabolism , Plasmodium berghei/drug effects
19.
J Med Chem ; 56(10): 3820-32, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23597080

ABSTRACT

Human African trypanosomiasis (HAT) is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei . Because drugs in use against HAT are toxic and require intravenous dosing, new drugs are needed. Initiating lead discovery campaigns by using chemical scaffolds from drugs approved for other indications can speed up drug discovery for neglected diseases. We demonstrated recently that the 4-anilinoquinazolines lapatinib (GW572016, 1) and canertinib (CI-1033) kill T. brucei with low micromolar EC50 values. We now report promising activity of analogues of 1, which provided an excellent starting point for optimization of the chemotype. Our compound optimization that has led to synthesis of several potent 4-anilinoquinazolines, including NEU617, 23a, a highly potent, orally bioavailable inhibitor of trypanosome replication. At the cellular level, 23a blocks duplication of the kinetoplast and arrests cytokinesis, making it a new chemical tool for studying regulation of the trypanosome cell cycle.


Subject(s)
Drug Discovery/methods , Phosphotransferases/chemistry , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coloring Agents , Drug Design , ErbB Receptors/antagonists & inhibitors , Humans , Indicators and Reagents , Lapatinib , Morpholines/pharmacology , Neglected Diseases , Structure-Activity Relationship , Tetrazolium Salts , Thiazoles , Trypanosoma brucei brucei/growth & development
20.
J Med Chem ; 54(18): 6277-85, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21854078

ABSTRACT

A library of diamine quinoline methanols were designed based on the mefloquine scaffold. The systematic variation of the 4-position amino alcohol side chain led to analogues that maintained potency while reducing accumulation in the central nervous system (CNS). Although the mechanism of action remains elusive, these data indicate that the 4-position side chain is critical for activity and that potency (as measured by IC(90)) does not correlate with accumulation in the CNS. A new lead compound, (S)-1-(2,8-bis(trifluoromethyl)quinolin-4-yl)-2-(2-(cyclopropylamino)ethylamino)ethanol (WR621308), was identified with single dose efficacy and substantially lower permeability across MDCK cell monolayers than mefloquine. This compound could be appropriate for intermittent preventative treatment (IPTx) indications or other malaria treatments currently approved for mefloquine.


Subject(s)
Antimalarials/chemical synthesis , Ethanolamines/chemical synthesis , Malaria/prevention & control , Methanol/analogs & derivatives , Methanol/chemical synthesis , Plasmodium falciparum/drug effects , Quinolines/chemical synthesis , Animals , Antimalarials/pharmacology , Cell Line , Cell Membrane Permeability , Dimerization , Dogs , Drug Resistance , Ethanolamines/pharmacology , Ethylenediamines/chemical synthesis , Ethylenediamines/pharmacology , Mefloquine/analogs & derivatives , Mefloquine/chemical synthesis , Mefloquine/pharmacology , Methanol/pharmacology , Mice , Plasmodium berghei , Quinolines/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...